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The insulin-like growth factors (IGFs) are mitogens that
play a pivotal role in regulating cell proliferation, differen-
tiation, and apoptosis. The effects of IGFs are mediated
through the IGF-I receptor, which is also involved in cell
transformation induced by tumor virus proteins and onco-
gene products. Six IGF-binding proteins (IGFBPs) can in-
hibit or enhance the actions of IGFs. These opposing effects
are determined by the structures of the binding proteins.
The effects of IGFBPs on IGFs are regulated in part by
IGFBP proteases. Laboratory studies have shown that IGFs
exert strong mitogenic and antiapoptotic actions on various
cancer cells. IGFs also act synergistically with other mito-
genic growth factors and steroids and antagonize the effect
of antiproliferative molecules on cancer growth. The role of
IGFs in cancer is supported by epidemiologic studies, which
have found that high levels of circulating IGF-I and low
levels of IGFBP-3 are associated with increased risk of sev-
eral common cancers, including those of the prostate, breast,
colorectum, and lung. Evidence further suggests that certain
lifestyles, such as one involving a high-energy diet, may in-
crease IGF-I levels, a finding that is supported by animal
experiments indicating that IGFs may abolish the inhibitory
effect of energy restriction on cancer growth. Further inves-
tigation of the role of IGFs in linking high energy intake,
increased cell proliferation, suppression of apoptosis, and
increased cancer risk may provide new insights into the eti-
ology of cancer and lead to new strategies for cancer pre-
vention. [J Natl Cancer Inst 2000;92:1472–89]

It has been hypothesized that cells with accelerated rates of
division and proliferation are predisposed to the development of
cancer (1). Recently, a number of epidemiologic studies have
shown consistently that high circulating levels of a potent mi-
togen, insulin-like growth factor (IGF)-I, are associated with
increased risk for several common cancers, including those of
the breast (2), prostate (3), lung (4), and colorectum (5). The
level of IGF-binding protein (IGFBP)-3, a major IGF-I-binding
protein in serum that, in most situations, suppresses the mito-
genic action of IGF-I, is inversely associated with the risk of
these cancers.

Functionally, IGF-I not only stimulates cell proliferation but
also inhibits apoptosis. It has now been recognized that the com-
bination of these mitogenic and antiapoptotic effects has a pro-
found impact on tumor growth (6). Besides their direct effect on
cancer-related cellular activities, members of the IGF family
also interact with a variety of molecules that are critically in-
volved in cancer development and progression, including the sex
steroid hormones, products of tumor suppressor genes, and other
growth factors. Furthermore, the expression and production of
IGF-I, a key peptide hormone that is involved in regulating

human growth and development, are influenced by nutrition and
physical activity. These features of the IGF family underscore its
potential importance in the mechanisms that underlie the roles of
lifestyle and behavior in influencing cancer risk.

Several extensive reviews (7–19) have addressed the molecu-
lar structure and physiologic function of members of the IGF
family. Here, we review briefly the molecular and biochemical
aspects of each member of the IGF family and the experimental
evidence for the role of IGFs in cancer, discuss the potential
impact of lifestyle factors on this group of growth factors, and
summarize the findings of clinical and epidemiologic studies of
the IGF family in relation to cancer etiology and pathogenesis.
Collectively, the evidence reviewed here provides insights into
the role of mitogenic growth factors in carcinogenesis. All in-
formation used in this review was identified by searching the
English-language literature in the MEDLINE® database.

THE IGF FAMILY

Overview

IGFs play an important role in regulating cell proliferation,
differentiation, apoptosis, and transformation (11). IGFs exert
their actions by interacting with a specific receptor on the cell
membrane, namely, the IGF-I receptor (IGF-IR), and the inter-
action is regulated by a group of specific binding proteins. All of
these molecules are considered to be members of the IGF family,
which includes the polypeptide ligands IGF-I and IGF-II, two
types of cell membrane receptors (i.e., IGF-IR and IGF-IIR), and
six binding proteins (i.e., IGFBP-1 through IGFBP-6). In addi-
tion, a large group of IGFBP proteases hydrolyzes IGFBPs,
resulting in the release of bound IGFs that then resume their
ability to interact with IGF-IR. Thus, as far as IGF action is
concerned, IGFBP proteases may also be regarded as part of the
IGF family because they indirectly regulate the action of IGFs.

Insulin-Like Growth Factors

IGF-I and IGF-II are single-chain polypeptides (8,9). The two
molecules have 62% homology in their amino acid sequences.
The molecules share additional structural similarities, and their
structures resemble the structure of proinsulin. The IGF-I gene is
located on chromosome 12 (8,9), and the IGF-II gene is located

Affiliations of authors: H. Yu, Feist-Weiller Cancer Center, Louisiana State
University Health Sciences Center, Shreveport; T. Rohan, Department of
Epidemiology and Social Medicine, Albert Einstein College of Medicine, Bronx, NY.

Correspondence to: Herbert Yu, M.D., Ph.D., Feist-Weiller Cancer Center,
Louisiana State University Health Sciences Center, 1501 Kings Highway,
Shreveport, LA 71130-3932 (e-mail: hyu@lsumc.edu).

See “Notes” following “References.”

© Oxford University Press

1472 REVIEW Journal of the National Cancer Institute, Vol. 92, No. 18, September 20, 2000

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/92/18/1472/2909573 by guest on 17 April 2024



on chromosome 11, 1.4 kilobases (kb) downstream from the
insulin gene (20). Table 1 summarizes some features of IGF
molecules and of their encoding genes.

The IGF-I gene has two promoter sites (21,22), and the IGF-II
gene has four promoters, i.e., P1–P4 (23). Multiple transcripts
(i.e., messenger RNAs) for both IGFs have been identified (8,9).
Initiation of transcription at different promoter sites and alter-
native splicing are believed to be responsible for producing the
multiple transcripts (23–30). The presence of distinct transcripts
is usually indicative of diverse responses of cells to different
environmental stimuli, and animal studies (31,32) have sug-
gested that diet and nutrition may induce different patterns of
IGF-I transcription.

In adult tissues, IGF-II transcription is initiated from the P1
promoter. Transcription from promoters P3 and P4 is often seen
in fetal tissues (33), and increased transcription from these pro-
moter sites has been observed in certain cancer tissues (33–39).
Another feature of IGF-II gene transcription is genomic imprint-
ing, in which the expression of a gene is associated with a
particular parental allele (40,41). DNA methylation (42), histone
acetylation (43), and use of specific promoter sites (44,45) are
mechanisms that may control allele-specific transcription. Loss
of genomic imprinting in the IGF-II gene is often found in
cancer (46–50).

Expression of the IGF-I gene is regulated primarily by growth
hormone (GH). GH, however, has no regulatory effect on IGF-II
expression (11), and the primary regulator of IGF-II gene tran-
scription remains unclear. Nevertheless, expression of IGFs is
also influenced by various hormones, including estrogens, adre-
nocorticotropic hormone, thyrotropin, luteinizing hormone, fol-
licle-stimulating hormone (FSH), and human chorionic gonad-
otropin, as well as by other growth factors, such as platelet-
derived growth factor (PDGF), epidermal growth factor (EGF),
and fibroblast growth factor (FGF). Diet and nutrition affect
circulating IGF-I levels, suggesting a possible impact on IGF-I
production (7,8).

IGF-I has both immediate and long-term effects on various
cellular activities, and these effects are mediated mainly through
IGF-IR (see next section). IGF-I exerts an acute anabolic action
on protein and carbohydrate metabolism by increasing cellular
uptake of amino acids and glucose and by stimulating glycogen
and protein synthesis (11). IGF-I also has a long-term impact on
cell proliferation, differentiation, and apoptosis (11). IGF-I is a
potent mitogen for a wide variety of cells and exerts its mito-

genic action by increasing DNA synthesis and by stimulating the
expression of cyclin D1, which accelerates progression of the
cell cycle from G1 to S phase (51,52). The mitogenic effect
of IGF-I can be abolished by suppressing the expression of
cyclin D1 (53). In addition to stimulating cell cycle progression,
IGF-I also inhibits apoptosis. IGF-I is able to stimulate the ex-
pression of Bcl proteins and to suppress expression of Bax,
which results in an increase in the relative amount of the Bcl/Bax
heterodimer, thereby blocking initiation of the apoptotic path-
way (54–56).

Like IGF-I, IGF-II has mitogenic and antiapoptotic actions
and regulates cell proliferation and differentiation. Concentra-
tions of IGF-II in the blood are higher than those of IGF-I in
humans of all ages. In adults, IGF-II levels vary between 400
and 600 ng/mL, whereas IGF-I levels range between 100 and
200 ng/mL. Despite its presence at higher concentration in the
circulation, IGF-II is believed to play a less important role in
postnatal growth than does IGF-I. This conclusion is based on
the impact of these IGFs on body growth, their regulation by
GH, and their relative binding affinities to IGF-IR and IGFBPs.
Animal experiments indicate that the action of IGF-II on body
development and growth occurs at a much earlier stage of life
than that of IGF-I. Evidence (57,58) suggests that IGF-II may
play a key regulatory role during embryonic and fetal growth.
After birth, the role of IGF-II is gradually replaced by that of
IGF-I (7,11,13). Levels of circulating IGF-I change substantially
with age—they increase slowly from birth to puberty, surge at
puberty, and decline with age thereafter—and these changes are
regulated by GH. For IGF-II, however, the circulating levels are
relatively stable after puberty, and GH has little influence on
them. The actions of both IGF-I and IGF-II are mediated through
IGF-IR. IGF-I has a twofold to 15-fold higher binding affinity to
IGF-IR than does IGF-II (11). Three of the six IGFBPs have
higher affinity to IGF-II than to IGF-I, and the rest have similar
binding affinity to both IGFs (14). The combination of high
affinity to the receptor and low affinity to the binding proteins
results in more IGF-I than IGF-II interacting with IGF-IR.

IGF Receptors

Both IGF-IR and IGF-IIR are glycoproteins and are located
on the cell membrane. The two receptors, however, differ com-
pletely in structure and function (12,13). IGF-IR is a tetramer of
two identical �-subunits and two identical �-subunits (12,13,15).
Structurally, IGF-IR resembles the insulin receptor, and there is

Table 1. Molecular features of members of the insulin-like growth factor family*

Molecular weight, kd No. of amino acids Gene location Gene size, kb No. of exons

IGF-I 7.7 70 12q22–12q24 100 6
IGF-II 7.5 67 11p15 30 9
IGF-IR† 225 �-subunit: 706 15q25–15q26 100 21

�-subunit: 626
IGF-IIR 270 2450 6q25–6q27 140 Unknown
IGFBP-1 25.3 234 7p12–7p14 5.2 4
IGFBP-2 31.4 289 2q31–2q34 32 4
IGFBP-3 28.7 264 7p12–7p14 8.9 5
IGFBP-4 26.0 237 17q12–17q21 12 4
IGFBP-5 28.6 252 2q31–2q24 33 4
IGFBP-6 22.8 216 12q13 4.7 4

*Abbreviations used: IGF � insulin-like growth factor; IGFBP � insulin-like growth factor-binding protein; IGF-IR � IGF-I receptor; IGR-IIR � IGF-II
receptor; kb � kilobases; kd � kilodaltons.

†IGF-IR is a tetrameric protein (two �- and two �-subunits).
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60% homology between them. IGFs and insulin are able to
cross-bind to each other’s receptor, albeit with much weaker
binding affinity than that for the preferred ligand (59,60). A
hybrid receptor that is composed of one �-subunit and one
�-subunit of IGF-IR and one �-subunit and one �-subunit of the
insulin receptor (11,12) has been identified. The amount of in-
sulin/IGF-I hybrid receptor varies substantially from tissue to
tissue. Since its binding affinity for IGF-I is higher than that for
insulin, the receptor is thought to function predominantly as an
IGF-I receptor, but its biologic importance remains largely un-
known.

IGF-IIR is monomeric (13,16,61,62). Three ligand-binding
regions are found in the extracellular domain of the receptor, one
for IGF-II binding and two for proteins containing mannose-6-
phosphate (M6P), including renin, proliferin, thyroglobulin, and
the latent form of transforming growth factor (TGF)-� (11).
Binding of IGF-IIR to TGF-� activates the latter (16,63). Since
IGF-IIR can bind both IGF-II and M6P-containing molecules, it
is also called the IGF-II/M6P receptor.

The expression of IGF-IR is regulated by steroid hormones
and growth factors (13,15). Since high IGF-I levels result in a
decline in IGF-IR, IGFs may act as negative feedback signals to
repress expression of IGF-IR (64,65). In contrast to the effect of
IGFs, other growth factors, including basic FGF, PDGF, and
EGF, stimulate IGF-IR expression (15,66,67). The expression of
IGF-IR is also stimulated by estrogens, glucocorticoids, GH,
FSH, luteinizing hormone, and thyroid hormones (12,15). On
the other hand, tumor suppressor gene products, such as wild-
type p53 protein and WT1 (Wilms’ tumor protein), inhibit ex-
pression of IGF-IR (68–71). Nutrition also affects IGF-IR levels
(72–74). Little is known about the regulation of IGF-IIR expres-
sion, although some studies (11,13,75,76) have suggested that
insulin, IGFs, EGF, and M6P may increase the level of IGF-IIR
in the cell membrane.

Binding of IGFs to IGF-IR activates the receptor’s tyrosine
kinase activity, which triggers a cascade of reactions among a
number of molecules involved in the signal transduction path-
way. Two distinct signal transduction pathways have been iden-
tified for IGF-IR. One pathway activates Ras protein, Raf pro-
tein, and mitogen-activated protein kinase, and the other
pathway involves phosphoinositol-3-kinase (11,12). Other sig-
nal transduction pathways that are initiated by IGF-IR may
also exist (77). Activation of IGF-IR by ligand binding is nec-
essary to allow IGF-IR to mediate the actions of IGFs. In addi-
tion to mediating the mitogenic and antiapoptotic actions of
IGFs, IGF-IR is involved in cell transformation. In vitro experi-
ments (78) have shown that removal of IGF-IR from the cell
membrane by eliminating the IGF-IR gene, by suppressing its
expression, or by inhibiting its function can abolish cell trans-
formation.

IGF-IIR has no tyrosine kinase activity, and it binds only to
IGF-II (16). Since binding of IGF-IIR to IGF-II results in deg-
radation of IGF-II, IGF-IIR acts like an antagonist to IGF-II,
reducing its biologic activity (16). Because of this effect, IGF-
IIR has been considered to be a potential tumor suppressor mol-
ecule. A unique feature of IGF-IIR may contribute to its ability
to act as a scavenger for circulating IGF-II. Upon proteolytic
cleavage, the extracellular domain of the receptor is disassoci-
ated from the cell membrane as a soluble fragment that circulates
in the blood with the ability to bind to IGF-II and to facilitate its
degradation (79–84).

IGF-Binding Proteins

Six IGFBPs with specific binding affinities for IGFs have
been identified. These proteins have some structural homology
(13,14,85–90). Table 1 summarizes the molecular features of
these proteins. IGFBPs undergo substantial post-translational
modification, which affects their binding affinities for IGFs
(17,18,85). IGFBPs are able to bind to specific cell membrane
receptors as well as to attach to the cell surface or to the extra-
cellular matrix (17,19,85).

Regulation of IGFBP gene transcription is complex and tissue
specific. A number of hormones, including estrogens, glucocor-
ticoids, parathyroid hormone, FSH, GH, thyroid hormone, insu-
lin, vitamin D, and cortisol, have been found to regulate the
expression of IGFBPs (17,19,91–96). Growth factors, including
FGF, EGF, TGF-�, PDGF, and IGFs themselves, as well as
retinoic acid, are also involved in the regulation of expression of
these binding proteins (96–101). The expression of IGFBP-1 is
suppressed by insulin and IGFs (17,19,91). As with its role in the
regulation of IGFs, GH plays an important role in stimulating the
expression of IGFBP-3 (92). Certain cytokines, such as inter-
leukin 1 and tumor necrosis factor-�, are also able to increase
IGFBP-3 levels (102).

IGFBPs have multiple and complex functions, which can be
either IGF dependent or IGF independent. With respect to IGF-
dependent function, IGFBPs are able to inhibit or to enhance the
action of IGFs, resulting in either suppression or stimulation of
cell proliferation (17,19). These opposing effects of IGFBPs on
IGFs are determined by the molecular structures of the binding
proteins. When binding to IGFs, IGFBPs play three major roles:
1) transporting IGFs, 2) protecting IGFs from degradation, and
3) regulating the interaction between IGFs and IGF-IR. Nor-
mally, IGFBPs have higher binding affinity to IGFs than does
IGF-IR; therefore, binding of IGFBPs to IGFs blocks the inter-
action between IGFs and IGF-IR and suppresses IGF action
(17,19). However, binding of IGFBPs to IGFs also protects IGFs
from proteolytic degradation, and that protection can enhance
the action of IGFs by increasing their bioavailability in local
tissue (17,19). The actual impact of IGFBPs on IGFs depends
largely on post-translational modification of IGFBPs by phos-
phorylation and proteolysis (17–19,103–105). The association of
IGFBPs with the cell membrane or extracellular matrix may also
affect the binding affinity of IGFBPs to IGFs.

IGFBP-1, IGFBP-2, IGFBP-3, and IGFBP-5 have been found
to have dual regulatory effects on IGFs, either suppressing or
enhancing the action of IGFs. The effects of IGFBP-2, IGFBP-3,
and IGFBP-5 on IGFs are regulated by proteolysis of the binding
proteins, whereas the effect of IGFBP-1 on IGFs is affected by
phosphorylation (11,17–19). In addition to undergoing proteoly-
sis and phosphorylation, IGFBP-1, IGFBP-2, IGFBP-3, and
IGFBP-5 bind to specific cell membrane receptors or attach to
the cell surface, which reduces their binding affinities for IGFs
and results in the release of free IGFs (11,17–19). The binding
affinity of IGFBP-5 for IGFs also decreases when IGFBP-5 is
associated with extracellular matrix (17,18). IGFBP-1, IGFBP-2,
and IGFBP-5 are all suspected of having IGF-independent ef-
fects on cellular activities, such as cell adhesion and migration
(11,17,19).

IGFBP-3 is found not only to regulate the mitogenic action of
IGFs but also to inhibit their antiapoptotic effect (106). Besides
its IGF-dependent function, IGFBP-3 also has an IGF-
independent inhibitory effect on cell growth (17,19). This effect
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may be mediated through a cell membrane receptor that is spe-
cific for IGFBP-3 (107,108).

IGFBP-4 and IGFBP-6 are able to inhibit the mitogenic ac-
tion of IGFs, but these proteins, unlike the others, do not en-
hance the actions of IGFs (11,19). IGFBP-4 and IGFBP-6 also
undergo proteolysis, but this change seems to have little impact
on their functions (11,17,109,110).

IGFBP Proteases

Since the actions of IGFs can be either suppressed or en-
hanced by IGFBPs, proteolysis of IGFBPs by IGFBP proteases
is an important factor in determining the regulatory impact of
IGFBPs on IGF action. Prostate-specific antigen (PSA), a serine
protease, is able to cleave IGFBP-3 and IGFBP-5 (19,111), and
proteolysis of IGFBP-3 by PSA reduces its binding affinity to
IGF-I, which restores the mitogenic activity of IGF-I (112).
Another serine protease, �-nerve growth factor, has 65% homol-
ogy to PSA and proteolytic activity toward IGFBP-4 and
IGFBP-6 (109). Cathepsin D, an acid-activated lysosomal pro-
tease, can proteolyze all six IGFBPs (103,110,113). Matrix me-
talloproteinases, including interstitial collagenase, gelatinase A,
stromelysin 1, gelatinase B, and disintegrin metalloproteinase,
are involved in the proteolysis of IGFBP-2, IGFBP-3, IGFBP-4,
and IGFBP-5 (19,114–116). Other proteolytic enzymes that are
able to hydrolyze IGFBPs include plasmin, thrombin, and preg-
nancy-associated plasma protein-A (117–119).

Regulation of IGFBP proteolysis is complex and remains
poorly understood. Changes in physiologic condition can influ-
ence the proteolysis of IGFBPs in the circulation. For example,
serum from pregnant women has higher IGFBP proteolytic ac-
tivity than serum from nonpregnant women (120). The expres-
sion or presence of one binding protein affects the proteolysis of
the others (121,122). Binding between IGFBPs and IGFs also
affects IGFBP proteolysis (17). It has also been shown that IGFs
modulate the proteolytic activities of IGFBPs, suggesting that
IGFs have an autocrine regulatory loop to control their own
action (123). Insulin influences the activities of IGFBP proteases
(124,125), but GH has little impact on these proteases (126).
Estrogens may regulate the proteolysis of IGFBPs (127).

IGFS AND CANCER: EXPERIMENTAL EVIDENCE

The possible involvement of IGFs in cancer was observed
initially in cell culture experiments (128). In vitro studies have
shown consistently that members of the IGF family not only
regulate the growth of various cancer cells but also interact with
other cancer-related molecules. Animal experiments have sug-
gested further that IGFs may mediate the effect of energy intake
on the risk of cancer.

Direct Involvement in Cancer

IGF-I and IGF-II are strong mitogens for a wide variety of
cancer cell lines, including sarcoma, leukemia, and cancers of
the prostate, breast, lung, colon, stomach, esophagus, liver, pan-
creas, kidney, thyroid, brain, ovary, and uterus (both cervical
and endometrial) (128–133). IGFs are also overexpressed in cer-
tain cancers (128). Animal experiments (134,135) indicate that
overexpression of IGF-I increases the likelihood of tumor de-
velopment in certain tissues. Overexpression of IGF-II may re-
sult from loss of genomic imprinting in IGF-II, loss of function
of a transcriptional repressor, or change of transcription pro-
moter sites (130,136–138). Cancer cells with a strong tendency

to metastasize have higher expression of IGF-II and IGF-IR than
those with a low ability to do so (139). The strong impact of
IGF-II on cancer growth that is observed consistently in labo-
ratory studies and the paucity of clinical and epidemiologic stud-
ies that have found an association between circulating IGF-II
and cancer risk suggest that IGF-II may exert its action via
paracrine rather than endocrine regulation.

The effects of IGFs on cancer cells are mediated through
IGF-IR. Eliminating IGF-IR from the cell membrane, blocking
the interaction of IGFs with IGF-IR, or interrupting the signal
transduction pathway of IGF-IR can abolish the mitogenic ac-
tion of IGFs on cancer cells (130,140–142). IGF-IR also plays a
critical role in cell transformation that is induced by tumor-virus
proteins and oncogene products. IGF-IR is involved not only in
the induction of cell transformation but also in the maintenance
of the transformed phenotype (130). IGF-IR is overexpressed
in certain cancers, and its overexpression is associated with ag-
gressive tumors (143,144). The hybrid receptor that binds both
IGF-IR and insulin may also mediate the effect of IGFs on
cancer (145,146). A recent study (147) indicates that the insulin
receptor is involved in mediating the actions of IGF-II on breast
cancer.

Since IGF-IIR antagonizes the effect of IGF-II, loss of
IGF-IIR function is expected in cancer. One study found cancer-
related missense mutations in the IGF-IIR gene with resultant
disruption of the binding of IGF-IIR to its ligand. Cancer cells
that lack the ability to degrade IGF-II have been shown to have
a strong growth potency (148). Suppressing the expression of
IGF-IIR yields the same effect as mutation in the IGF-IIR gene
(149). Reestablishing the function of IGF-IIR in cancer cells that
lack IGF-IIR reduces cancer growth and increases apoptosis
(150).

In cancer, IGFBPs regulate the action of IGFs (151–156). In
most situations, the binding proteins suppress the mitogenic ac-
tion of IGFs and promote apoptosis (157–159). However, be-
cause of the presence of IGFBP proteases (17–19,160), two in
vitro studies (161,162) have found that IGFBPs are able to
stimulate the growth of cancer cells. Oh et al. (107) found that
IGFBP-3 inhibited breast cancer cell growth without interacting
with IGFs. Other studies (163,164) reported that IGFBP-3 could
induce apoptosis of breast and prostate cancer cells without the
presence of IGFs or IGF-IR.

Interactions With Other Molecules

Many molecules that are known to be involved in cancer have
been found to have substantial interactions with members of the
IGF family. In general, IGFs interact synergistically with other
mitogenic growth factors and steroids and antagonize the effects
of antiproliferative molecules in cancer cells.

In breast cancer cells, estrogens enhance the mitogenic effect
of IGF-I, induce expression of IGF-I, and stimulate production
of IGF-IR (165–168). Estrogens also repress synthesis of some
IGFBPs in breast tissue (169,170). In breast cancer cells, estro-
gens decrease the expression of IGF-IIR and increase the level of
IGFBP proteases (171). The interaction between estrogens and
IGF is reciprocal. IGF-I enhances expression of estrogen recep-
tor (ER) in breast cancer cells, and ER levels in breast tissue are
associated with the levels of some IGFBPs (172,173) (see “Can-
cer Prognosis” section below).

Antiestrogenic agents increase the expression of IGFBPs
(174–176). Tamoxifen, which is antiestrogenic in breast tissue,
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abolishes the effects of estrogens on IGF-I, inhibits transcription
of IGF-I, and attenuates the response of IGF-IR to IGFs
(177,178)

The expression of IGFs in the uterus is regulated by estro-
gens, and IGFBPs interfere with this process (179–181). Since
tamoxifen has estrogenic effects in the uterus, synergistic inter-
play between tamoxifen and IGFs is also observed in endome-
trial cells. Tamoxifen enhances the IGF-stimulated growth of
endometrial cancer cells (182). Furthermore, there is an interac-
tion between the signal transduction pathways of the two sys-
tems. IGF-I can enhance ER-induced gene transcription in the
absence of estrogen (183). IGFBPs, in contrast, suppress the
transcriptional activation that is initiated by ERs (184). IGFs
increase the activity of estrone sulfatase, which hydrolyzes es-
trone sulfate to estrone (185).

Synergistic interaction is also observed between IGFs and
EGF, another potent mitogen. In cervical cancer cells, EGF is
able to stimulate IGF-II expression and to increase IGF-IR’s
response to its ligand. Increases in IGF levels, in turn, enhance
the mitogenic action of EGF (186,187). In addition, EGF can
suppress the expression of IGFBP-3 and increase the availability
of free IGFs, further enhancing the mitogenic signal of IGFs
(188). In prostate cancer cells, interrupting the signaling path-
way for EGF suppresses not only the effect of EGF but also that
of IGF-I (189).

Several studies have suggested that IGFs may mediate the
effects of tumor viruses. In hepatocellular carcinoma, hepatitis B
virus stimulates IGF-IR expression (190) and increases tran-
scription of the IGF-II gene from the P3 and P4 promoters (191).
Hepatitis C virus may also be responsible for increased IGF-II
transcription from fetal promoters in hepatitis C virus-related
liver disease, including hepatocellular carcinoma (192).

Several antiproliferative molecules exert their actions by in-
terfering with IGF signaling. Inhibition of breast cancer cell
growth by TGF-� is mediated through induction of IGFBP-3,
which inhibits the mitogenic action of IGFs (98,193). Like TGF-�,
retinoic acid inhibits the growth of breast cancer cells by in-
creasing IGFBP-3 expression (97,101,109). Vitamin D and its
synthetic analogues can suppress the stimulatory effect of IGFs
on the growth of breast and prostate cancer cells by increasing
the expression of IGFBPs and reducing the expression of IGF-IR
and IGF-II (94,95,194,195).

Tumor suppressor gene products have a profound impact on
the IGF family. Wild-type p53 protein induces the expression of
IGFBP-3 (196), represses the transcription of IGF-II from its P3
and P4 promoters (33,197), and suppresses IGF-IR expression
(70,198,199). Not only does p53 regulate the action of IGFs but
also IGFs influence p53 function. When IGF-I-induced DNA
synthesis takes place in breast cancer cells, p53 loses its function
by undergoing phosphorylation and relocation from the nucleus
to the cytoplasm (200). Other tumor suppressor proteins that
interact with IGFs include the Wilms’ tumor suppressor gene
product WT1 (69,201,202), the mammary-derived growth in-
hibitor MDGI (203), and the tumor suppressor gene PTEN
(204).

Energy Intake

Animal experiments have shown that energy restriction can
reduce the risk of cancer and inhibit tumor growth (205–208)
and that this effect can be attributed in part to IGFs (209,210).
Restriction of energy intake in rats transplanted with human

prostate cancer cells slows the growth of cancer and accelerates
apoptosis. These effects are associated with a decrease in circu-
lating IGF-I (209). Dietary restriction reduces the growth rate of
bladder cancer in mice (210). When diet-restricted mice are
supplemented with IGF-I, the effect of dietary restriction on
cancer growth disappears, and the tumors in these animals grow
at the same rate as those in animals that are not on food restric-
tion, suggesting that the effect of energy restriction on cancer is
mediated mainly through IGF-I (210).

CIRCULATING IGFS AND IGFBPS AND THEIR

DETERMINANTS

IGFs in Blood

More than 90% of IGFs in the circulation are bound to the
IGFBPs, mainly IGFBP-3. The complex of IGFBP-3 and IGFs is
further bound to another protein, which is called acid-labile sub-
unit and is a glycoprotein with a molecular mass of about 63 kd
(211). These three-molecule complexes are the major circulating
forms of IGFs in the blood. All IGFs and IGFBPs are detectable
in the blood (7,14), but measurement of serum or plasma IGF
levels must be preceded by a procedure that separates IGFs from
their binding proteins (212). Without the separation step, IGF-I
measured in the blood is believed to represent only free IGF-I,
which is about 1% of the total IGF-I in the circulation (213).

Although there is considerable interindividual variation in
serum and plasma levels of IGFs and IGFBPs, blood levels of
IGFs in each individual are relatively constant, and there is no
apparent diurnal or circadian variation (7). Besides age, the de-
terminants of this variation remain largely unknown, although
the relationship of these growth factors, in particular that of
IGF-I, with dietary factors and lifestyle has been investigated in
a number of studies (2,3,5,214–237).

Similar to levels of IGFs, levels of most of the IGFBPs are
also quite stable in the circulation, with the exception of those of
IGFBP-1. Because of its close relationship with insulin, serum
IGFBP-1 levels decrease in response to increased levels of in-
sulin after food intake (238). Nutritional status also affects the
level of IGFBP-2 in the serum. Fasting increases its level sub-
stantially; however, this response occurs slowly. A role for in-
sulin in regulating the level of IGFBP-2 in serum has been
suggested by animal experiments but has not been seen in hu-
mans (11).

Effects of Age and Sex

Levels of IGFs and IGFBPs in the blood show little variation
with sex but vary substantially with age. Serum IGF-I level is
low at birth and increases gradually until puberty (239–244).
The rate of increase undergoes a sharp upsurge at puberty, after
which the concentration declines slowly with age. Serum IGF-II
levels also increase with age from birth to puberty, but after
puberty they remain stable (239,240). Concentrations of
IGFBP-1 and IGFBP-2 in blood are high at birth and decline
with age until puberty (240,241). After that, the levels of these
proteins remain relatively constant or increase slightly. The age-
specific distributions for IGFBP-3 and acid-labile subunit are
similar to the distribution for IGF-I (240,242,243). Limited data
suggest that serum IGFBP-5 level declines with age, whereas
IGFBP-4 and IGFBP-6 concentrations increase with age
(240,244).
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Diet, Nutrition, Anthropometric Characteristics, and
Physical Activity

Energy intake, body mass index ([weight in kg]/[height in
m]2), and physical activity all appear to affect blood levels of
IGFs and IGFBPs. However, the intimate relationship among
these variables makes disentanglement of their independent ef-
fects difficult. Four studies (3,5,220,223) found no association
between the level of IGF-I and height. Of studies that investi-
gated the association between IGF-I and body mass index, some
showed no association with total IGF-I (3,5,215,220,223,225),
whereas others showed inverse associations either with total
(217,222) or with free (225) IGF-I.

Nutritional status and dietary energy intake are critical regu-
lators of IGF-I level, and the IGF family links nutrition to
growth (72). IGF-I levels are decreased in association with pro-
tein-calorie malnutrition, and they increase in response to im-
provements in energy intake (226). Fasting also results in a
decrease in IGF-I level (227), but the effect is smaller in obese
subjects who are presumably less dependent on energy intake to
maintain IGF-I levels (228). Overnutrition has an effect that is
opposite that of fasting, in that it results in an increase in IGF-I
level (229). Studies of normal adults have demonstrated a posi-
tive correlation between protein intake and serum IGF-I levels
(245). A 50% reduction in calorie intake or a 30% reduction in
protein intake has been shown to result in a decline in serum
IGF-I and IGFBP-3 levels and an increase in IGFBP-2 level
(246). These findings are consistent with those of animal ex-
periments (247–251), which have also shown that restriction of
nutrients has diverse effects on IGF-I gene transcription (252).
Although all of these studies demonstrate a substantial impact of
energy and protein intake on the IGF family, the exact nature of
the dose–response relationships between food intake and levels
of IGFs in circulation remains to be determined.

The association between IGF-I level and physical activity
appears to be rather complex, and current evidence does not
allow clear conclusions to be drawn. Cross-sectional studies
have shown either no association between physical activity and
IGF-I levels (5,220,223,230) or positive associations with lei-
sure-time exercise (214), general physical activity (224), or
physical fitness (215) and training (232). A nonrandomized
study (231) that involved a 16-week training program did not
produce a change in IGF-I levels. Some randomized trials have
shown that IGF-I levels increase in association with a 2-week
training intervention (233) or a strength test (234), but others
(235,236,253) have shown that IGF-I decreases after a 5-week
period of endurance training in adolescents. One study (234)
found no association of IGF-I level with strength training. The
inconsistent findings for IGF levels in relation to physical ac-
tivity may be age related. Exercise increases IGF-I levels in
adults (233,234); however, in children and adolescents, the op-
posite effect is observed (72,235,236).

Since many tissues are able to express the IGF-I gene, the
effect of IGF-I is subject to both endocrine and paracrine regu-
lations. Most circulating IGFs and IGFBP-3 are manufactured in
the liver. Levels of IGF-I in circulation are closely associated
with body growth, especially at puberty. Children with short
stature have low circulating IGF-I levels (254,255), and indi-
viduals with acromegaly have elevated serum IGF-I levels
(256,257).

The assumption that IGF-I exerts its action on body growth
mainly through endocrine regulation was challenged recently.

Two animal studies (258,259) suggested that hepatic IGF-I
was not involved in growth regulation. However, these findings
are controversial, since paracrine regulation of IGF-I may have
been elevated to compensate for the loss of endocrine-regulated
IGF-I, and the action of IGF-II was not evaluated or controlled
in the experiment.

Effect of Alcohol Consumption and Cigarette Smoking

The relationship is unclear between alcohol consumption and
IGF levels. Different levels of alcohol consumption may have
opposite effects on IGF levels (5,223,260–262). Long-term and
heavy consumption of alcohol can cause severe damage to liver
function, and loss of liver function may result in a decline in the
production of IGFs (260). Indeed, it has been shown that alco-
holics have relatively low IGF-I levels (220). But some labora-
tory experiments have shown that alcohol enhances IGF-I action
and expression (261,262). One cross-sectional study (223) found
a positive association between moderate alcohol consumption in
elderly women and serum IGF-I levels, but the opposite rela-
tionship was observed in another study (5).

Different associations between IGF levels and cigarette
smoking have been reported. Two studies (223,263) found
a positive association between serum levels of IGF-I and ciga-
rette smoking, but one study (220) observed an inverse associa-
tion and two studies (4,5) showed no association. The level of
IGFBP-3 was found to be inversely associated with smoking in
one study (263). These associations might have been con-
founded by the association between alcohol consumption and
cigarette smoking.

IGFS AND CANCER: CLINICAL AND EPIDEMIOLOGIC

EVIDENCE

Clinical Studies

In a number of clinical studies, levels of IGFs, IGF-IR, and
IGFBPs were compared in subjects with and without cancer
(264–274). IGF-I levels have been shown to be higher in the
plasma and serum of women with breast cancer than in compa-
rable specimens from women without the disease (264,266,274),
although other studies have shown no difference between case
and control subjects with respect to levels of IGF-I (267,268) or
IGF-II (268) in the serum. One study (268) showed lower serum
levels of IGFBP-1, IGFBP-3, and IGFBP-6 in case subjects as
compared with control subjects, but another study (267) found
no difference. A 10-fold increase in IGF-IR content (measured
as nanograms per milligram of protein) has been observed in
breast cancer tissue as compared with normal tissue (265).

Two studies of colon cancer (269,270) found similar levels
of IGF-I in the sera of case and control subjects, whereas one
study (270) reported higher levels of IGF-II, IGFBP-2, and
IGFBP-3 in case subjects as compared with control subjects. In
endometrial cancer, one study (271) found lower serum IGF-I
levels in case subjects as compared with control subjects but no
difference in IGFBP-1 levels between the two groups. A study
with postmenopausal endometrial cancer patients (272) showed
higher serum IGF-I levels, lower IGFBP-1 levels, and no dif-
ference in IGFBP-3 levels when compared with healthy control
subjects. Another study (275) reported low IGF-I gene transcrip-
tion in endometrial cancer tissue but no difference in the pro-
duction of IGF-I and IGF-IR.

Journal of the National Cancer Institute, Vol. 92, No. 18, September 20, 2000 REVIEW 1477

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/article/92/18/1472/2909573 by guest on 17 April 2024



Clinical studies have found higher levels of serum IGF-I in
prostate cancer patients than in control subjects (276,277) and
higher levels of serum IGFBP-2 in prostate cancer patients than
in patients with benign prostatic hyperplasia or in healthy con-
trol subjects (273,278,279). The transcription and production of
IGFBP-2 are also higher in prostate cancer tissue than in normal
tissue (280). IGFBP-3 levels have been shown to be low in the
serum (279) and tumor tissue (280) of prostate cancer patients.
Studies (281,282) also suggest increased expression of IGF-II,
IGFBP-4, and IGFBP-5 in prostate cancer tissue.

Differences in levels of some IGFBPs in ovarian cancer pa-
tients as compared with those of control subjects are similar to
those of prostate cancer patients. Higher levels of IGFBP-2 and
lower levels of IGFBP-3 have been observed in sera of patients
with epithelial ovarian cancer as compared with normal control
subjects (283,284). Elevated IGFBP-2 expression has also been
found in ovarian tumor tissue (283,285). Studies (283,286) fur-
ther suggest that IGF-I levels may be increased in the serum and
cancer tissue of patients with ovarian cancer.

In general, the clinical studies reviewed here have been rela-
tively small, have not included adjustment for potential con-
founding factors, have not always described clearly the source of
the study subjects (in particular, the source of the comparison
groups), and have not presented estimates of cancer risk in as-
sociation with IGF levels. Although the inconsistencies in the
patterns described above do not allow firm conclusions to be
drawn, the clinical data suggest that the IGFs have a role in
cancer development.

Epidemiologic Studies

Epidemiologic studies (2–5,237,287–296) have investigated
the role of IGFs and IGFBPs in the etiology of cancers of the
breast, colon and rectum, prostate, and lung and of childhood
leukemia (Table 2). Although some of these studies were rela-
tively small, most were characterized by careful definition of the
comparison groups, adjustment for covariates, and estimation of
cancer risk by levels of the IGF or IGFBP of interest. To date,
most studies have focused on cancer risk in association with
serum or plasma levels of IGF-I, IGF-II, and IGFBP-3, or com-
binations thereof, and they have provided reasonably consistent
support for increased risk of solid tumors in association with
relatively high levels of IGF-I, decreased risk of solid tumors
and of childhood leukemia in association with relatively high
levels of IGFBP-3, and increased risk of breast cancer in asso-
ciation with a high ratio of IGF-I to IGFBP-3. For breast cancer,
the findings appear to hold largely for premenopausal women.
Mutual adjustment of IGF-I and IGFBP-3 levels appears to
strengthen the association of each of these factors with cancer
risk.

A high IGFBP-3 level is generally associated with a reduced
risk of cancer. However, two case–control studies, one of breast
cancer (288) and the other of prostate cancer (295), suggested
that risk was increased in association with relatively high levels
of IGFBP-3 (but the findings were not statistically significant).
The two studies (3,4) that examined cancer risk in association
with IGF-II level showed no association, as did one study (288)
that examined risk in association with IGFBP-1 level. A recent
study (296), however, found that high levels of IGFBP-1 in
serum were associated with increased risk of prostate cancer.

Most of the currently available data are from case–control
studies. Unless they are nested within prospective investigations,

case–control studies are generally unable to establish the tem-
poral nature of an association due to possible effects of the
disease process on blood levels of the molecules of interest and
are potentially susceptible to selection and information biases
(293). The results of case–control studies with respect to IGF
levels and the risk of breast, prostate, and colorectal cancers are
substantially—but not completely—in accord with those of co-
hort studies at the same sites.

Cancer Prognosis

The association between members of the IGF family and
various predictors of cancer prognosis has been investigated in a
number of cross-sectional studies (265–267,297–313). Prognos-
tic factors that have been examined in relation to IGF levels
include age, menopausal status, ER and progesterone receptor
(PR) status, tumor size, lymph node involvement, and histologic
grade. Several prospective studies (300–302,307–309,312,313)
have also examined the association of IGF levels with disease-
free or overall survival from cancer.

To date, work in this area has focused largely on breast can-
cer. Many of the investigations have been relatively small,
which may have compromised their ability to detect associa-
tions. Nevertheless, evidence suggests that IGF-IR is detectable
(265,297–301) and sometimes amplified (302) in tissues that are
ER or PR positive, although two studies (265,274) showed no
association. Findings on whether IGF-IR overexpression in
breast cancer affects prognosis are contradictory. Two studies
(314,315) suggested that IGF-IR expression might lead to poor
prognosis, whereas one study (265) found that overexpression of
IGF-IR is associated with less aggressive lesions. However,
studies (303–306,310–313) have consistently demonstrated an
inverse association between tissue IGFBP-3 levels and ER sta-
tus. Some (310–312) but not all (306,313) of the studies have
also suggested a similar association for PR status. Clinical stud-
ies (266,267,304–307,309,311) have not found consistent evi-
dence for associations between IGF levels and age, menopausal
status, tumor size, lymph node involvement, or degree of tumor
differentiation.

Studies of the association of IGFs with disease-free or overall
survival have also focused largely on breast cancer. One study
(300) found no association between IGF-IR level and disease-
free survival, one (301) found better disease-free and overall
survival in women with IGF-IR-positive tumors after 40 months
of follow-up and after adjustment for ER and PR status and other
prognostic indicators, and one (302) found worse overall sur-
vival in those who had evidence of IGF-IR amplification in their
tumors. Detection of IGFBP-3 in breast tissue has been reported
to have no association with disease-free survival (312,313) and
to have either no association with overall survival (312) or an
association with increased risk of death (313); the latter asso-
ciation was independent of other prognostic factors (313).

In relation to the other IGF markers that have been studied,
one study (307) showed an association between increased
IGFBP-4 levels in breast tissue and decreased overall survival in
women with large tumors (>2 cm in diameter), one study (309)
showed no association of the level of IGF-II in breast tissue with
disease-free or overall survival, and one study (308) showed no
association of IGF-I levels in serum with overall 2-year survival.

With the exception of two studies (302,313), the studies de-
scribed here have been relatively small and have not employed
long follow-up periods. Nevertheless, on the basis of the cur-
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Table 2. Summary of epidemiologic studies of IGFs, IGFBPs, and cancer risk*

Cancer

Author

(reference No.) Study design Comparison RR (95% CI) Adjusted for

Breast Bruning et al. (237) Case–control; 150 premenopausal and

postmenopausal case subjects (with

stage I or stage II disease) and 441

premenopausal and postmenopausal

population control subjects

Ratio of serum IGF-I/IGFBP-3:

�56.83 × 10−3 versus

<34.58 × 10−3

7.34 (1.67–32.16)

P for trend � .006

Age, menopausal status, family

history of breast cancer,

premenopausal BMI, WHR,

albumin, C-peptide, and

testosterone

Bohlke et al. (287) Case–control; 94 population-based

premenopausal case subjects with

ductal carcinoma in situ and 76 age-

and residence-matched control

subjects

Plasma IGF-I: >175.5 versus

�121.5 ng/mL

IGFBP-3: >3493.4 versus

�3239.4 ng/mL

High versus low ratio of

IGF-I/IGFBP-3†

1.8 (0.7–4.6)

0.7 (0.3–1.7)

1.6 (0.7–3.8)

Age, age at first birth, age at

menarche, height, BMI, log

estradiol (pg/mL), ethnic group,

parity, and first-degree family

history of breast cancer; IGF-I

and IGFBP-3 mutually adjusted

Hankinson et al. (2) Cohort of 32 826 women; 397 case

patients with in situ or invasive breast

cancer and 620 control subjects

matched on year of birth, time of

blood draw, fasting status, and month

of blood sampling, menopausal status,

and use of postmenopausal hormones

Plasma IGF-I

All women: �220 versus

<110 ng/mL

Postmenopausal women:

�220 versus <110 ng/mL

Premenopausal and age <50 y:

�207 versus <158 ng/mL

High versus low ratio of

IGF-I/IGFBP-3 in premeno-

pausal women age <50 y†

1.06 (0.66–1.70)‡

P for trend � .51

0.89 (0.51–1.55)

P for trend � .99

7.28 (2.40–22.0)

P for trend � .01

2.46 (0.97–6.24)

Matching factors

Del Giudice et al.

(288)

Case–control; 99 hospital-based

premenopausal case subjects with

lymph node-negative invasive breast

cancer and 99 control subjects with

nonproliferative breast disease

High versus low plasma IGF-I

concentration†

High versus low plasma IGFBP-1

concentration†

High versus low plasma IGFBP-3

concentration†

1.47 (0.66–3.27)

0.98 (0.44–2.18)

2.05 (0.93–4.53)

Age; IGFBP-1 also adjusted for

weight

Agurs-Collins et al.

(289)

Case–control; 30 postmenopausal

African-American case subjects and

30 control subjects

1 ng/mL increase in plasma IGF-I

concentration

1.012 (1.002–1.023) Adjustment factors not specified

Colon and

rectum

Ma et al. (5) Cohort of 14 916 men; 193 case subjects

and 318 age- and smoking-matched

control subjects

Plasma IGF-I: �230 versus

<135 ng/mL

Plasma IGFBP-3: �2598 versus

<2473 ng/mL

2.51 (1.15–5.46)

P for trend � .02

0.28 (0.12–0.66)

P for trend � .005

Age, cigarette smoking, BMI,

alcohol intake, and plasma

IGF-I or IGFBP-3

Pollak et al. (290) Case–control; 40 incident colorectal

cancer case subjects and 342 control

subjects with no history of colon

cancer and normal colonoscopy

results

90th versus 10th percentile

IGF-I/IGFBP-3

IGF-I

IGFBP-3

2.64 (1.07–6.49)

4.96 (1.28–19.19)

0.16 (0.04–0.56)

Age and sex; IGF-I and IGFBP-3

mutually adjusted

Giovannucci et al.

(291)

Cohort of 32 826 women; 79 case

subjects and an unknown number of

control subjects matched on age, time

of blood draw, and indication for

endoscopy

High versus low plasma IGF-I

concentration†

High versus low plasma IGFBP-3

concentration†

2.23 (0.91–5.47)

0.25 (0.08–0.79)

IGF-I and IGFBP-3 mutually

adjusted

Manousos et al.

(292)

Case–control; 41 case subjects and 50

control subjects

High versus low serum IGF-I

concentration†

High versus low serum IGF-II

concentration†

High versus low serum IGFBP-3

concentration†

2.3 (0.6–9.1)

2.7 (0.7–10.5)

0.5 (0.1–1.7)

Age, sex, education, height, and

BMI; IGFs and IGFBP-3

mutually adjusted

Prostate Mantzoros et al.

(294)

Case–control; 52 case subjects and 52

age-matched control subjects

60-ng/mL increase in serum IGF-I 1.91 (1.00–3.73) Age, height, BMI, education, sex

hormone-binding globulin,

testosterone, estadiol,

dihydrotestosterone, and

dehydroepiandrosterone sulfate

(Table continues)
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Fig. 1. Effects of insulin-like
growth factors and insulin-like
growth factor-I receptor on nor-
mal and cancerous cells and
their relationships with mito-
genic and antiproliferative mol-
ecules, tumor suppressor gene
products, and lifestyle factors.
Solid arrows indicate stimula-
tion. Dashed arrows indicate
suppression. Question marks
indicate that the effect remains
to be determined. Abbrevia-
tions used: EGF � epidermal
growth factor; GH � growth
hormone; IGF � insulin-like
growth factor; IGFBP � insu-
lin-like growth factor-binding
protein; IGF-IR � IGR-I re-
ceptor, TGF-� � transforming
growth factor-�.

Table 2 (continued). Summary of epidemiologic studies of IGFs, IGFBPs, and cancer risk*

Cancer

Author

(reference No.) Study design Comparison RR (95% CI) Adjusted for

Chan et al. (3) Cohort of 14 196 men; 152 case subjects

and 152 control subjects matched on

age, smoking status, and duration of

follow-up

Plasma IGF-I: �293.76 versus

<184.8 ng/mL

High versus low plasma IGF-II†

High versus low plasma IGFBP-3†

4.32 (1.76–10.6)

P for trend � .001

0.97 (0.48–1.95)

P for trend � .74

0.41 (0.17–1.03)

P for trend � .09

PSA, height, weight, BMI,

androgen receptor CAG

polymorphisms, and plasma

hormones; IGF-I and IGFBP-3

mutually adjusted

Wolk et al. (295) Case–control; 224 case subjects and 224

population control subjects frequency

matched on age

Serum IGF-I: �177.7 versus

<144.7 ng/mL

Serum IGFBP-3: �2955 versus

<2465 ng/mL

1.43 (0.88–2.33)

P for trend � .04

1.21 (0.75–1.93)

P for trend � .10

Age, height, and BMI

Signorello et al.

(296)§

Case–control; 208 case subjects and 70

population control subjects frequency

matched on age

Serum IGFBP-1: >17 versus

�10 ng/mL

5.1 (2.4–10.7)� Age, BMI, and height

Lung Yu et al. (4) Case–control; 204 case subjects and 218

control subjects matched on age, sex,

race, and smoking status

Plasma IGF-I: �177.5 versus

<98.4 ng/mL

Plasma IGF-II: �683.7 versus

<250.2 ng/mL

Plasma IGFBP-3: �44.4 versus

<31.3 ng/mL

2.75 (1.37–5.53)

P for trend � .002

1.33 (0.77–2.31)

P for trend � .97

0.48 (0.25–0.92)

P for trend � .05

IGF-I and IGFBP-3 mutually

adjusted and adjusted for age,

sex, ethnicity, cigarette smoking

status, BMI, and family history

of cancer; IGF-II not adjusted

Childhood

leukemia

Petridou et al. (293) Case–control; 122 case subjects and 122

hospital control subjects matched on

age, sex, and maternal place of

residence

50-ng/mL increase in serum IGF-I

1-�g/mL increase in serum

IGFBP-3

0.95 (0.80–1.13)

0.72 (0.55–0.93)

IGF-I and IGFBP-3 mutually

adjusted and adjusted for age,

sex, and age of the sera

*Abbreviations used: BMI � body mass index ([weight in kg]/[height in m]2); CI � confidence interval; IGF � insulin-like growth factor; IGFBP � insulin-like growth factor-binding

protein; PSA � prostate-specific antigen; RR � relative risk; WHR � waist-to-hip girth ratio.

†Cut points not presented.

‡Adjusted for IGFBP-3.

§Further analysis of a subset of specimens collected for the study by Wolk et al. (295).

�RR similar after additional adjustment for IGF-I an IGFBP-3 concentrations.
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rently available clinical evidence, it would appear that IGF lev-
els have little value in predicting cancer prognosis. This conclu-
sion is supported further by the results of studies of blood levels
of IGF-I, one (269) that involved comparing subjects with co-
lonic adenomas with those with carcinoma of the colon and two
(3,295) that examined the association between IGF-I levels and
stage of prostate cancer. None of these three studies showed any
evidence for differences between the compared groups.

CONCLUSION

The effects of IGFs on cells, their interplay with other mol-
ecules, and their relationships with lifestyle factors are summa-
rized in Fig. 1. As a group of essential cell growth modulators,
IGFs play a critical role in regulating cell growth and death. This
important function of IGFs has led to speculation concerning
their possible involvement in cancer development and growth.

Laboratory experiments demonstrate that IGFs are able to
stimulate the growth of a wide variety of cancer cells and to
suppress apoptosis. In addition to their direct effects on cancer
cells, IGFs also interact synergistically with other mitogenic
molecules and counteract antiproliferative molecules that are
involved in cancer development and progression. Findings of
experimental studies are supported by the observations of epi-
demiologic studies, which have shown that elevated levels of
IGF-I in the circulation are associated with increased risk for
several common cancers. In addition, an inverse association be-
tween IGFBP-3 and cancer risk has been observed in epidemio-
logic studies. However, since IGFBPs can either suppress or
enhance the action of IGFs, the inverse relationship between
IGFBP-3 and cancer risk has not been observed consistently in
all studies. Further elaboration of the pathways and interrela-
tionships that link members of the IGF family will increase our
understanding of cancer etiology and pathogenesis and might
yield opportunities for cancer prevention and therapy.

Evidence suggests that lifestyles characterized by a high-
energy diet may affect the IGF system, which may, in turn,
connect such lifestyles to high rates of cell proliferation and
predispose cells to risk of malignant transformation. Currently
unknown are the feasibility and validity of implementing dietary
interventions to reduce IGF levels with the goal of preventing
cancer. Studies that address this issue and the dose–response
relationship between food intake and levels of IGFs in circula-
tion may be of value in developing programs for cancer preven-
tion and control.
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