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Abstract

Background: Survival after a diagnosis of breast cancer varies considerably between patients, and some of this variation 
may be because of germline genetic variation. We aimed to identify genetic markers associated with breast cancer–specific 
survival.

Methods: We conducted a large meta-analysis of studies in populations of European ancestry, including 37 954 patients 
with 2900 deaths from breast cancer. Each study had been genotyped for between 200 000 and 900 000 single nucleotide 
polymorphisms (SNPs) across the genome; genotypes for nine million common variants were imputed using a common 
reference panel from the 1000 Genomes Project. We also carried out subtype-specific analyses based on 6881 estrogen 
receptor (ER)–negative patients (920 events) and 23 059 ER-positive patients (1333 events). All statistical tests were  
two-sided.

Results: We identified one new locus (rs2059614 at 11q24.2) associated with survival in ER-negative breast cancer cases 
(hazard ratio [HR] = 1.95, 95% confidence interval [CI] = 1.55 to 2.47, P = 1.91 x 10–8). Genotyping a subset of 2113 case 
patients, of which 300 were ER negative, provided supporting evidence for the quality of the imputation. The association 
in this set of case patients was stronger for the observed genotypes than for the imputed genotypes. A second locus 
(rs148760487 at 2q24.2) was associated at genome-wide statistical significance in initial analyses; the association was 
similar in ER-positive and ER-negative case patients. Here the results of genotyping suggested that the finding was less 
robust.

Conclusions: This is currently the largest study investigating genetic variation associated with breast cancer survival. Our 
results have potential clinical implications, as they confirm that germline genotype can provide prognostic information in 
addition to standard tumor prognostic factors.

Survival after a diagnosis of breast cancer varies consider-
ably between patients. Many factors influence outcome in 
an individual patient, including inherited genetic variation. 
This hypothesis is supported by several lines of evidence. It 
has been shown that first-degree relatives with breast cancer 
have a correlated likelihood of dying from the disease (1–3). 
Additionally, mouse strain is a determinant of metastatic pro-
gression in in vivo models (4). There are many mechanisms 
through which germline genetic variation might affect prog-
nosis. Some known disease susceptibility alleles confer dif-
ferential risks of different tumor subtypes that are associated 
with different outcomes—for example, deleterious alleles 
of BRCA1 are associated with estrogen receptor (ER)–nega-
tive disease, and several common germline genetic variants 
that are associated with susceptibility to breast cancer have 
different risks of ER-positive and ER-negative disease (5,6). 
Germline genotype could also affect the efficacy of adjuvant 
drug therapies or might influence tumor-host interactions, 
such as those involving the stroma surrounding a tumor or 

the host’s immune response (7). The host genotype might 
also influence the propensity of a tumor to seed and grow at 
metastatic sites.

The association between common germline genetic varia-
tion and breast cancer–specific survival has been examined in 
many candidate gene studies (8–16). These studies have identi-
fied numerous single nucleotide polymorphisms (SNPs) possi-
bly associated with outcome, but none have been conclusively 
replicated in further studies. Genome-wide association studies 
(GWAS) have been very successful at identifying susceptibility 
alleles for a wide range of normal and disease phenotypes (17). 
However, GWAS of breast cancer survival published to date have 
had modest sample sizes and have not identified any confirmed 
associations (7,18). It is clear that the success of other GWAS has 
depended on large sample sizes. It is likely that large studies of 
survival time are required if alleles associated with prognosis in 
breast cancer are to be identified. We therefore pooled genotype 
data from multiple breast cancer GWAS discovery and replica-
tion efforts and linked these data to available survival time data 
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for the case patients in order to maximize statistical power to 
detect associations.

Methods

Breast Cancer Patient Samples

We pooled data from multiple breast cancer case cohorts in popu-
lations of European ancestry with existing high-density SNP gen-
otyping (Supplementary Table  1–4, available online). These data 
comprise eight main genotype datasets (Collaborative Oncological 
Gene-environment Study [COGS] (5), BPC3 (19), CGEMS (20), HElsinki 
Breast Cancer Study [HEBCS] (16), METABRIC (21), PG-SNPs (22–25), 
Sweden Breast Cancer Study [SASBAC] (26), and UK2 (27)). Each 
study had been genotyped for 200 000 to 900 000 SNPs across the 
genome using a variety of genotyping arrays. SASBAC and HEBCS 
are single-case cohorts, and all others have multiple constituent 
studies. A summary of the studies in COGS contributing data to 
our analysis is shown in Supplementary Table 3 (available online). 
ER status was obtained mostly from medical records followed by 
immunohistochemistry performed on tumor tissue microarrays 
or whole-section tumor slides. All studies were approved by the 
relevant institutional review boards, and all participants provided 
written informed consent.

Genotyping Quality Control

The genotype and the sample quality control (QC) have been pre-
viously described for COGS (5), CGEMS (20), HEBCS (16), SASBAC 
(26), UK2 (27), PG-SNPs (22), and BPC3 (19). QC procedures have not 
been described previously for the Molecular Taxonomy of Breast 
Cancer International Consortium (METABRIC) germline genotype 
data: SNPs were excluded 1) if the genotype frequencies deviated 
from those expected under Hardy-Weinberg equilibrium at P val-
ues of less than 1 × 10−5, 2) if they had a minor allele frequencies 
(MAFs) of less than 1%, 3) if the MAF was between 1% and 5% and 
call rate was under 99%, and 4) if the MAF was greater than 5% 
and the call rate was under 95%. A summary of the number of 
genotyped SNPs and the number of SNPs passing QC is shown in 
Supplementary Table 4 (available online). All individuals with low 
call rates (< 95%) or high or low heterozygosity (P < 1 x 10−5) were 
excluded from subsequent analyses. All analyses were based 
on subjects of European ancestry based on genotype data. The 
methods and criteria for exclusion of non-European samples has 
been described previously for all studies apart from METABRIC, 
for which we used a set of unlinked SNPs, and the program Local 
Ancestry in adMixed Populations (28) to assign intercontinental 
ancestry based on the HapMap release no.22 genotype frequency 
data for European, African, and Asian populations. Subjects with 
less than 90% European ancestry were excluded.

Imputation

Genotypes for common variants across the genome were 
imputed using a reference panel from the 1000 Genomes Project 
in order to increase genome coverage. Genotype imputation for 
PG-SNPs, METABRIC, UK2, SASBAC, HEBCS, and COGS was per-
formed using IMPUTE2 (29) after prephasing with SHAPEIT (30). 
This was done in chunks of 5 MB and default parameters for 
both programs. The imputation reference set consisted of 2184 
phased haplotypes from the full 1000 Genomes Project data set 
(March 2012). All genomic locations are given in NCBI Build 37/
UCSC hg19 coordinates. Imputation for CGEMS and BPC3 was 
performed using the program MaCH (31). SNPs with imputation 

r2 < 0.3 were excluded on a study-by-study basis. All SNPS with a 
MAF of less than 1% were excluded.

Statistical Analysis

The primary end point was breast cancer–specific survival. 
Time-to-event was calculated from the date of diagnosis. 
However, case patients were recruited at variable times 
before or after diagnosis; therefore, time under observation 
was calculated from date of recruitment (left censoring) in 
order to prevent the bias that could result from the inclu-
sion of prevalent cases. Follow-up was right censored on the 
date of death if death was from something other than breast 
cancer, the date last known alive if death did not occur, or at 
10 years after diagnosis, whichever came first. We fitted uni-
variate Cox proportional hazard models to assess the asso-
ciation of genotype with breast cancer–specific mortality. 
We also ran analyses for ER-negative and ER-positive breast 
cancer. Each data set including the three component case 
cohorts in BPC3 was analyzed separately. The Cox models 
were stratified by study for the COGS dataset. We controlled 
for cryptic population substructure by including a variable 
number of principal components as covariates for each data 
set. The Cox proportional hazards assumption was tested for 
each significant SNP of interest analytically using Schoenfeld 
residuals. There was no evidence of nonproportional haz-
ards. For the statistically significantly associated SNPs, we 
ran multivariable Cox models adjusting for age, nodal status, 
tumor size, tumor grade, and adjuvant treatment using the 
COGS data. We used an in-house program written in C++ for 
the analysis of COGS, HEBCS, METABRIC, PG-SNPs, SASBAC, 
and UK2. Analysis of CGEMS and BPC3 data was conducted 
using ProbABEL (32). We excluded SNPs with MAFs under 1% 
because of extreme value of the test statistics. Overall sta-
tistical significance tests for each SNP were performed by 
combining the results for each data set using a fixed-effects 
meta-analysis. All statistical tests were two-sided. Inflation 
of the test statistics (λ) was estimated by dividing the 45th 
percentile of the test statistic by 0.357 (the 45th percentile 
for a χ2 distribution on 1 degree of freedom). Heterogeneity 
between studies was measured using the I2 statistic (33,34). 
Correlation between SNPs was calculated using Pearson cor-
relation coefficient. Associations were regarded as statisti-
cally significant at a nominal P value of less than 5 x 10–8 
(genome-wide significance).

eQTL

Expression quantitative trait locus (eQTL) analyses were per-
formed for all genes in the 1 MB region spanning the associ-
ated SNPs using probe-level gene expression data for breast 
epithelium samples taken from normal tissue adjacent to the 
tumor of 135 breast cancer patients of European ancestry from 
the METABRIC study (21). These were assayed using the Illumina 
HT12 platform. We also analyzed eQTL data of 387 breast 
tumors from the Cancer Genome Atlas (TCGA) (303 ER-positive, 
81 ER-negative, three unknown) assayed using the Agilent 
G4502A-07-3 array (35). Germline SNP genotypes were available 
for normal and tumor samples from the Affymetrix SNP 6.0 plat-
form imputed into 1000 Genomes Project data (March 2012) for 
the three SNPs of interest: rs2059614 at 11q24.2, and rs148760487 
and rs114860916 at 2q24.2 (see Results section). Association 
between genotype and expression was tested by linear regres-
sion with false discovery rate control.
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Results

The overall results were based on 37 954 case patients with 2900 
deaths from breast cancer (Supplementary Table  2, available 
online). The results of the subtype-specific analyses were based 
on 23 059 ER-positive case patients (1333 deaths) from five stud-
ies and 6881 ER-negative case patients (920 deaths) from eight 
studies.

In the overall analysis, we identified 28 SNPs associated with 
breast cancer–specific survival at P values of less than 5x10-8  
(Table  1; Supplementary Figures  1 and 2, available online). 
All 28 SNPs were located in the same region on chromosome 
2 and had been imputed in all eight datasets. The strongest 
association was for rs148760487 (hazard ratio [HR] = 1.88, 95% 
confidence interval [CI] = 1.51 to 2.34), P = 1.5x10-8) (risk allele 
frequency = 0.01). This SNP was associated with breast cancer–
specific survival in both ER-positive (HR = 2.07, 95% CI = 1.47 to 
2.91, P = 3.1x10-5) and ER-negative case patients (HR = 1.87, 95% 
CI = 1.27 to 2.75, P =  .002). The imputation efficiency for these 
SNPs varied between an r2 of 0.69 and 0.997 for the eight data 
sets. The inflation factor λ for the overall analysis was 1.01.

A single imputed SNP, rs2059614, located on chromosome 11, 
was associated with breast cancer–specific mortality at genome-
wide statistical significance in patients with ER-negative dis-
ease (HR  =  1.90, 95% CI  =  1.54 to 2.33, P  =  1.3x10-9) (risk allele 
frequency = 0.06) (Table 1; Figures 1 and 2). The imputation r2 
ranged from 0.75 to 0.82 across eight studies with ER-negative 
cases. The inflation factor λ for analysis based on ER-negative 
cases was 1.03. No SNP reached nominal genome-wide statisti-
cal significance in the analysis of case patients with ER-positive 
disease (Supplementary Figures 3 and 4, available online), for 
which the strongest association was for rs7149859 in chromo-
some 14 (HR = 1.22, 95% CI = 1.13 to 1.33, P = 7.0x10-7). There was 
very little between study heterogeneity for the overall analysis 
for rs148760487 (I2 = 0%, P = .59) (Supplementary Figure 5, avail-
able online) or the ER-negative analysis for rs2059614 (I2 = 0%, 
P = .50) (Supplementary Figure 6, available online).

We conducted follow-up imputation on the two regions 
around rs148760487 and rs2059614 using the IMPUTE2 Markov 
chain Monte Carlo algorithm with 80 iterations without prephas-
ing, as omitting the prephasing step should maximize imputa-
tion accuracy (29). We reimputed all SNPs in the genomic regions 
500 KB pairs on either side of the two SNPs of interest. The 
association for rs148760487 was somewhat weaker (HR = 1.75, 
95% CI = 1.39 to 2.20, P = 1.44 x 10–6). A highly correlated SNP, 
rs114860916 (r2  =  0.97) was now the most strongly associated 
SNP in the region (HR = 1.74, 95% CI = 1.39 to 2.18, P  = 1.16 x 
10–6). In contrast, rs2059614 remained the most strongly associ-
ated SNP with survival of ER-negative disease (HR = 1.95, 95% 
CI = 1.55 to 2.47, P = 1.91 x 10–8). Again there was no evidence 

of heterogeneity in the meta-analysis of these SNPs (data not 
shown).

We genotyped rs148760487 and rs2059614 in 2113 breast 
cancer case patients from the Studies of Epidemiology and Risk 
Factors in Cancer Heredity (SEARCH) in order to confirm the 
quality of the imputation. The correlation between the imputed 
and observed genotypes was 0.63 for rs148760487 and 0.68 for 
rs2059614. This compares with an estimated imputation r2 of 
0.76 and 0.79 for the genotypes imputed with prephasing using 
genotype data from the COGS custom array. We then compared 
the results of association analyses for the SEARCH data set 
using the imputed and observed genotypes. For rs148760487, 
there were 133 breast cancer deaths. In this subset the asso-
ciation based on genotyped data was weaker than the associa-
tion based on the imputed data (HR = 1.66, 95% CI = 0.75 to 3.69, 
P = .21 and HR = 2.06, 95% CI = 0.84 to 5.04, P = .11, respectively), 
but this difference was not statistically significant (P = .72). For 
rs2059614, there were genotyped and imputed data for 300 
ER-negative samples with 45 deaths. The association with geno-
typed data was stronger than that for imputed data (HR = 1.80, 
95% CI  =  0.99 to 3.25, P  =  .05 and HR  =  1.44, 95% CI  =  0.51 to 
4.12, P = .49, respectively), as would be expected for a true posi-
tive association. Again, this difference was not statistically sig-
nificant (P =  .72). We also conducted multivariable analysis for 
these two SNPs using the pooled data within the COGS dataset, 
stratified by study and adjusting for principal components, age, 
lymph node status, tumor size, stage, grade, ER status (where 
applicable), and adjuvant treatment; the results were similar to 
the main findings (data not shown). Finally, we compared the 
hazard ratios for rs148760487 in all case patients and rs2059614 
for ER-negative case patients in premenopausal (defined as age 
at diagnosis younger than 45 years) and postmenopausal (age at 
diagnosis of 55 years or older). There was no statistically signifi-
cant difference (P = .96 and .24, respectively).

The risk allele of rs2059614 was associated with increased 
expression of EI24 and CHEK1 in normal breast epithelium 
adjacent to tumor from the METABRIC study (P = .002 and .007, 
respectively) (Supplementary Figure 7, available online). EI24 is 
a tumor suppressor gene involved in TP53 dependent apoptosis. 
CHEK1 is required for checkpoint-mediated cell cycle arrest in 
response to DNA damage. Other SNPs in the region were more 
strongly associated with both EI24 and CHEK1 expression, but 
were not associated with prognosis. There were no statistically 
significant eQTLs for rs148760487 and rs114860916 in normal 
breast epithelium. None of the three SNPs had statistically sig-
nificant eQTLs in tumors from the TCGA study. We also explored 
the association between gene expression for all genes in the 
1 MB region spanning the associated SNPs and breast cancer–
specific mortality using KM plotter (36). Data were available for 
575 ER-negative breast cancer patients. CHEK1 expression was 

Table 1. Summary of SNPs by levels of statistical significance in the final combined analysis, ER-negative and ER-positive case patients*

P value cutoff

All invasive case patients ER-positive case patients ER-negative case patients

Observed Expected Observed Expected Observed Expected

< 5x10-8 28 0 0 0 1 0
< 1x10-7 31 0 0 0 3 1
< 1x10-6 34 10 2 10 25 10
< 1x10-5 134 97 75 98 292 100
< 1x10-4 928 971 894 975 1164 1002
< 1x10-3 9375 9707 10 509 9752 11 032 10 020

* ER = estrogen receptor; SNP = single nucleotide polymorphism.
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Figure 1. Association plot for combined GWAS and COGS analyses for estrogen receptor (ER)–negative cases. The P values of the association between each single nucle-

otide polymorphism (SNP) and breast cancer survival were obtained by cox regression analyses with adjustment for principle components for each study and then 

combined. The y-axis shows the -log10 P values of each SNP analyzed, and the x-axis shows their chromosome position. The red horizontal line represents P = 5x10-8.  

All statistical tests were two-sided.

Figure 2. Quantile-Quantile (Q-Q) plot for the combined GWAS and COGS analyses for estrogen receptor (ER)–negative cases. The y-axis represents the observed -log10 P 

value, and the x-axis represents the expected -log10 P value. The red line represents the expected distribution under the null hypothesis of no association. All statistical 

tests were two-sided.
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not associated with relapse-free survival in ER-negative case 
patients (HR = 0.86, 95% CI = 0.65 to 1.12, P = .25) (Supplementary 
Figure 8, available online) but had statistically significant asso-
ciations in ER-positive case patients (HR = 1.59, 95% CI = 1.31 to 
1.91, P = 1.2x10-6). EI24 expression was associated with relapse-
free survival in both ER-positive case patients (HR  =  0.75, 
95% CI  =  0.63 to 0.90, P  =  .002) and ER-negative case patients 
(HR = 1.38, 95% CI = 1.07 to 1.77, P =  .01). It is interesting that 
the direction of association is consistent: The risk allele G of 
rs2059614 is associated both with poor breast cancer–specific 
survival in ER-negative case patients and with higher levels of 
EI24 expression in normal breast epithelium, which in turn is 
associated with poorer relapse-free survival in breast cancer. 
Expression of neither of the genes near rs148760487 was associ-
ated with relapse.

Both the two top SNPs lie in putative enhancer sequences 
for which promoter interactions have been predicted 
(Supplementary Figure  9, available online) (37,38). IFIH or FAP 
might be the target of rs148760487, and EI24 might be the target 
of rs2059614 because the SNP is in an enhancer in endothelial 
cells that is predicted to regulate EI24.

Discussion

This is the largest genetic association study of breast cancer 
prognosis to date. We identified one new locus (rs148760487 
at 2q24.2) associated with breast cancer–specific survival in all 
breast cancer and one new locus (rs2059614 at 11q24.2) asso-
ciated with breast cancer survival in ER-negative case patients 
at genome-wide levels of statistical significance. However, 
both these associations were based on imputed genotype 
data. Genotyping a subset of the case patients confirmed that 
the quality of the imputation was reasonable, but for one SNP 
(rs148760487), the association in the subset of samples with 
both genotyped and imputed data was weaker for the geno-
typed data. Thus we are less confident that this represents a 
true positive. On the other hand, as would be expected for a true 
positive, the association of rs2059614 got stronger when com-
paring genotyped with imputed data, suggesting that this is a 
robust association.

Two genes lie within the 1 MB region on chromosome 2 
spanning rs148760487 to KCNH7 and BC042876. KCNH7 encodes 
a voltage-gated potassium channel with diverse functions and 
has no obvious role in cancer. BC042876 is a noncoding RNA 
gene with no known function. Another SNP in the same region, 
rs1424760, has been reported to be associated with serum phos-
pholipid levels, but this SNP is only weakly correlated with 
rs148760487 (r2 = 0.11).

There are 18 genes in the genomic region 500 KB either side 
of rs2059614 in chromosome 11 (Supplementary Table 5, avail-
able online). Several of these are known to be involved in pro-
cesses relevant to cancer, such as cell death and DNA damage 
responses. Of particular interest are EI24 and CHEK1, as expres-
sion of both of these in normal breast epithelium is associ-
ated with rs2059614 genotype. Additionally, expression of EI24 
is associated with relapse-free survival in both ER-positive 
case patients and ER-negative case patients. Furthermore, this 
genomic region, 11q24, is frequently altered in cancers.

Genome-wide association studies with large-scale replica-
tion have been extremely successful in identifying multiple 
variants associated with many different phenotypes. For exam-
ple, more than 70 common variants are known to be associ-
ated with an altered risk of breast cancer (5,6). In contrast, this 
study of breast cancer prognosis has identified just two variants 

associated at genome-wide statistical significance. There are 
several possible reasons for this difference. Despite the large 
sample size used in these analyses, the power to detect asso-
ciation with breast cancer–specific survival is only modest (see 
Supplementary Figure 10, available online). All of the common 
alleles associated with disease susceptibility confer relative 
risks of less than 1.2, and most are associated with relative risks 
of less than 1.1. Alleles such as these can be detected using 
case-control studies with a total sample size of approximately 
100 000 (5). However, our analyses, based on 2900 breast cancer 
deaths, had limited power to detect alleles conferring hazard 
ratios of less than 1.2. Power to detect an allele with a hazard 
ratio greater than 1.5 was good (60% power if the MAF = 0.05, 
100% power if the MAF > 0.1), suggesting that few such alleles 
are likely to exist.

Another issue affecting our ability to detect associations with 
prognosis is the heterogeneity of the phenotype. A  wide vari-
ety of factors influence survival time after diagnosis, including 
tumor biology and treatment. Breast cancer is a heterogeneous 
disease, and different disease subtypes have different clinical 
outcomes (39–41). Restricting the analyses to specific subtypes 
in addition to ER status would reduce this heterogeneity, but the 
sample size would also be greatly reduced as subtype-specific 
information is not available for all case patients in these analy-
ses, and some subtypes are relatively uncommon.

Our findings provide support for the hypothesis that germ-
line genetic variation influences outcome after a diagnosis of 
breast cancer. Identification of novel germline genetic mark-
ers of breast cancer prognosis may help to elucidate molecular 
mechanisms of tumor progression and metastasis. Ultimately 
this may lead to the identification of new targets for therapeu-
tic interventions. It may also lead to insights into mechanisms 
driving the differential response to adjuvant therapies and 
thereby enable improved targeting of therapy. In the clinical set-
ting, germline markers of prognosis could be used to enhance 
risk stratification and provide patients with information about 
their prognosis in order to identify those patients most likely 
to benefit from adjuvant therapy. However, even studies larger 
than ours will be required in order to meet the challenge of iden-
tifying additional loci. Genotyping samples from clinical trials 
may prove to be particularly useful, but it is clear that data from 
multiple studies will need to be combined if there are to be fur-
ther successes in this field.
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